

High Performance Computing for Scientific Data-Intensive Tasks: Friend or Foe?

Salman Habib HEP and MCS Divisions Argonne National Laboratory

Acknowledgments: Doug Benjamin, Lindsey Bleem, Franck Cappello, Taylor Childers, Katrin Heitmann, Tom LeCompte, Ravi Madduri, Dan Murphy-Olson, Adrian Pope, Tom Uram (Argonne)

Debbie Bard, Wahid Bhimji, Lisa Gerhardt, Peter Nugent (LBNL)

Will it Work?

Dealing with supercomputers is painful!

- HPC programming is tedious (MPI, OpenMP, CUDA, OpenCL, —)
- Batch processing ruins interactivity
- File systems corrupt/eat your data
- Software suite for HPC work is very limited
- Analyzing large datasets is frustrating
- HPC experts are not user-friendly
- Machine downtime and crashes are common
- Ability to 'roll your own' is limited

Running Jobs	Queued Jobs Reservations						
Total Queued Jobs: 172							
Job Id ≎	Project	≎ Score ▼	Walltime ≎	Queued Time \$	Queue	\$	Nodes 0
307941	SkySurvey	8351.7	1d 00:00:00	5d 01:10:03	prod-capability		32768
307942	SkySurvey	8350.5	1d 00:00:00	5d 01:09:42	prod-capability		32768
309793	NucStructReact_2	7069.0	01:00:00	1d 19:13:34	prod-capability		32768
309794	NucStructReact_2	7065.1	01:00:00	1d 19:12:28	prod-capability		32768
309795	NucStructReact_2	7056.8	01:00:00	1d 19:10:04	prod-capability		32768
309271	LatticeQCD_2	6121.1	03:00:00	3d 03:40:34	prod-capability		12288
309314	LatticeQCD_2	5036.1	04:50:00	2d 22:51:59	prod-capability		12288
309315	LatticeQCD_2	5034.8	03:00:00	2d 22:51:38	prod-capability		12288
309316	LatticeQCD_2	5034.0	04:50:00	2d 22:51:24	prod-capability		12288
309317	LatticeQCD_2	5033.0	03:00:00	2d 22:51:08	prod-capability		12288
309318	LatticeQCD_2	5032.6	04:50:00	2d 22:51:01	prod-capability		12288

Computing Needs for Science

- Many Communities Need Large-Scale Computational Resources
 - Light sources
 - Biology
 - Climate/Earth Sciences
 - High Energy Physics
 - Materials
- Message: Overall scientific computing use case is driven by large-scale data flow + volume
- Data-intensive applications will be ubiquitous, and will need performance, reliability, and usability
- Overall balance of compute + I/O + storage + networking will need to be thought through

Huge Variety of Large-Scale Data-Intensive Tasks

- Mining/Classification
 - Image Analysis
- Statistical Inverse Problems
 - Reconstruction
- Data Analysis/Management
 - Instrumental Pipelines
- Real-Time Analytics
 - Experiments and Data "In-Loop"
- Data Services
 - Fast queries on large datasets

-0.6

-0.8

-1.0 -1.2

-1.4

-1.6

Planck+WP
-2.0- SPT_{C1}+H₀+BBN

0.55 0.60 0.65

File System

SPT_{CL}+Planck+WP+H_n+BAO+SNe

 Ω_{DE}

3. Run XPCS

2. Automatically

transfer data to the Magellan resource

0.70 0.75 0.80

In-Situ and Off-line analysis

1. Save

compressed

 APS Users view output visualizations and may adjust experiment parameters

Scientific Data and Computing: 'Geography'

Optimal Large-Scale Efficiency

- Desire data and computing in the same place, but
 - for a number of reasons often not *realistic*

Optimal Usability

 Mix of small/medium/large-scale computing, data, and network resources, but often not affordable

Real-World Issues

- Distributed ownership of data, computing, and networking creates policy barriers
- Lack of shared priorities across owners
- Multiple use case collisions: hard to optimize at the system level
- Funding politics creates and (sometimes) stabilizes nonoptimal 'solutions'

Practical Response

Make things better, but not unrealistically better

Different Flavors of Computing

but don't have it

- High Performance Computing ('PDEs')
 - Parallel systems with a fast network
 - Designed to run tightly coupled jobs
 - High performance parallel file system
 - Batch processing
- Data-Intensive Computing ('Interactive Analytics')
 - Parallel systems with balanced I/O
 - Designed for data analytics Want more of this ("Science Cloud"),
 - System level storage model
 - Interactive processing
- High Throughput Computing ('Events'/'Workflows')
 - Distributed systems with 'slow' networks
 - Designed to run loosely coupled jobs
 - System level/Distributed data model
 - Batch processing

Boundary Conditions

• What's the Problem?

- ▶ Even if solutions can be designed *in principle*, the resources needed to implement them are (usually) not available
- This is because, *despite all the evidence of its power*, computing does not get high enough priority compared to building "things"
- In part this is due to the success of computing progress in this area is usually much faster than in others, so one can assume that computing will just happen — to what extent is this still true?

Large-Scale Computing Available to Scientists

- Lots of supercomputing (HPC) available and more on the way
- Not enough data-intensive scalable computing (DISC) available to users, hopefully this will change over time
- Publicly funded HTC/Grid computing resources cannot keep pace with demand
- Commercial space (Cloud) is an excellent option but is not issue-free
- Storage and networking remain major problems

HEP Cosmic Frontier Example: LSST and Computing

LSST computing (pipeline + analysis)

- Estimates of initial computing needs are unclear, ranging from 150-350 TFlops/year
- Initial storage needs are ~PB, growing linearly
- Based on this, we would want (at least) the #1 machine in the Top 500 in 2006
- In 2022 there may be O(1000-10,000) such machines in the US alone!
- Storage requirement is already 'trivial', LSST is NOT 'Big Data'

So what's the problem?

- Analyses will be complex (and there will be multiple reprocessing steps)
- These tasks will expand to fill available computational space
- Programming models may be very different from those in use today

300 TFlops/10PB, 10kW in 2020 (Projection)

Case Example: High Energy Physics

Scales

 HEP science covers a number of scales (table-top to the most complex experiments in the world) and computing models (laptop to world-wide grid)

HEP Frontiers

- Energy Frontier (large experiments at colliders, O(1000) researchers/expt)
- Intensity Frontier (small/medium/large, O(10-1000) researchers/expt)
- Cosmic Frontier (small/medium/large scale, O(10-1000) researchers/expt)

Data

- Most experimental data requires fine-grained, 'event' style analysis
- Data pipelines can be complex and need to be run many times (individual campaigns can last for months)
- Scale of data is variable 10s of TB to 100s of PB/year
- Multiple IO requirements

• ASCR/HEP Exascale Requirements Review

http://arxiv.org/abs/1603.09303, also http://hepcce.org/resources/reports/

HEP Computing Paradigms

High Throughput Computing (HTC)

 Major exploitation of Grid resources. Coevolution of HEP experimental software and the Grid is reaching a potential breaking point (not enough resources to handle demand). New hardware/software exploits needed.

High Performance Computing (HPC)

Classic use of HPC resources by theorists.
 New ideas for simulating experimental events include event services and dedicated front-ends for job packaging.

Data-Intensive Scalable Computing (DISC)

 Analysis of datasets generated from simulations and co-analysis of simulation and observational data without HTC lead times. Desire for true interactive largescale computing ('power cloud').

Large Hadron Collider (LHC) worldwide computing infrastructure

HEP Computing Paradigm (Cosmic and Energy Frontiers)

Simulated Data: 1) Large-scale simulation of the Universe, 2) Synthetic catalogs, 3) Statistical inference (cosmology); Analysis: Comparison with actual data

Simulated Data: 1) Event generation (lists of particles and momenta), 2) Simulation (interaction with detector), 3) Reconstruction (presence of particles inferred from detector response); Analysis: Comparison with actual data

DISC

Analytics/Workflow Complexity Example

HEP Computing Requirements for Energy Frontier

- HEP Requirements in computing/storage will scale up by ~50X over 5-10 years
 - Flat funding scenario fails must look for alternatives!

2024

HPC-based DISC: Likely Exploits

Most use cases likely to be DISC/HTC

- Note HPC systems can easily handle these in the very near future
- Possibly fall into two classes 1) many runs of a simple, not highly optimizable code, 2) smaller, but still sizable number of runs of a potentially optimizable code

'Single node' application span

- Nodes are big enough: >100GB RAM
 + NVRAM (total memory ~PB with I/O BW at ~TB/s)
- Key parallelism exploit at the node level

Exceptions

 Large-scale spatio-temporal statistics (will need system level parallelism essentially an HPC application)

Focus on node-level parallelism: Quasiindependent tasks run on individual nodes; intermittent communication across nodes

Main themes:

- 1. Locality, locality, locality, —
- 2. Threading/Vectorization
- 3.I/O

"Data Meets HPC" — Basic Requirements

- Software Stack: Ability to run arbitrarily complex software stacks (software management)
- Resilience: Ability to handle failures of job streams (resilience)
- Resource Flexibility: Ability to run complex workflows with changing computational 'width' (elasticity)
- Wide-Area Data Awareness: Ability to seamlessly move computing to the data (and vice versa where possible); access to remote databases and data consistency (integration)
- Automated Workloads: Ability to run large-scale automated production workflows (global workflow management)
- End-to-End Simulation-Based Analyses: Ability to run analysis workflows on simulations using a combination of in situ and offline/co-scheduling approaches (hybrid applications)

HPC Systems in HEP World: Nuts and Bolts

HEP vs. HPC Practice

- HEP community used to 'owned' resources
- HPC systems belong to someone else no root access!
- HPC systems have higher levels of security requirements

Data Transfers

- Large data transfers on HPC systems via dedicated data transfer nodes, unlike the LHC Grid, where transfers are to worker nodes
- HPC I/O not optimized for fine-grained file I/O

Compute Architecture

Node-level architecture supports computeheavy applications that can potentially scale up; most HEP applications are not computeintensive and scalability is not needed (event level analysis, 1-10MB of data/event)

Connecting to HPC Systems: Edge Services

Edge service design must consider a number of factors; security, resource flexibility, interaction with HPC schedulers, external databases, requirements of the user community — several specific examples are in production use. **Key point** — nothing from a user's job message is ever executed on a command line, only applications registered in the edge service database can be run

Large-Scale Data Movement

- Offline Data Flows: Cosmological simulation data flows already require ~PB/week capability, next-generation streaming data will require similar bandwidth
- ESnet Project: Aim to achieve a production capability of 1 PB/week (FS to FS, also HPSS to HPSS) across major compute sites
- Status: Very close but not there yet (600+ TB/week); numbers from a simulation dataset "transfer test package" (4 TB)
- Future: Automate entire process within the data workflow including retrieval from archival storage (HPSS); add more compute/data hubs (BNL, FNAL, SDSC, —)

Petascale DTN project, courtesy Eli Dart, HEP-CCE/ESnet support

Energy Frontier Status

HEP Payloads on HPC/Next-Gen Architectures

- X86 clusters are fine
- Xeon Phi (KNL) looking good (Geant4, etc.)
- ▶ IBM BG/Q systems also ok
- GPUs problematic (too different from X86)

Data Transfers

 ASCR facilities prefer a single solution for all users, petascale data transfer project ongoing, using Globus

Software Management

Containerization work with multiple projects the (including Cosmic and Intensity Frontiers); uses NERSC's Shifter technology — work ongoing with CMS and ATLAS teams

See Childers/

• I/O on HPC Systems

Burst buffers have led to factor of 2 at ICHEP2016 improvements in HEP I/O tests, more possible

HPC systems already providing ~150M corehours/year, roughly equivalent to 15% of the ATLAS global Grid resources

Gerhardt

Cosmic Lab of the Future Demo (SC16)

SC16 SciNet Demo

- HPC system Mira or Theta at Argonne
- DISC system Blue Waters at NCSA
- Data Center SC16 booth, NERSC, ORNL systems
- PDACS (Portal for Data Analysis services for Cosmological Simulations) as analysis engine

Summary

- HPC systems ARE useful for data-intensive tasks: Current estimates are that up to 70% of HEP computing can be done on HPC platforms
- Will HPC systems deliver on this promise?: This is largely a policy issue, not primarily determined by technical bottlenecks
- Is the HEP case unique?: The HEP community is very "data-aware" as compared to some others; the number of competing efforts is not large

• What about other fields?: There is likely to be an "effort barrier" — the use case must be at large-enough scale to make a supercomputing-based attack worthwhile; cloud or local resources will remain attractive options for

many applications

Making the exascale environment work for HEP through interaction with ASCR — HEP-CCE http://hepcce.org/

to share computing ideas and tools

HEP-CCE Coordinators:
Salman Habib (Argonne),
Rob Roser (Fermilab), and
Peter Nugent (LBNL)

HEP-CCE: a place